Prim's Algorithm
Prim's algorithm, also known as DJP algorithm, Jarník's algorithm, Prim–Jarník algorithm or Prim–Dijkstra algorithm, is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The algorithm operates by building this tree one vertex at a time, from an arbitrary starting vertex, at each step adding the cheapest possible connection from the tree to another vertex.
/*****Please include following header files*****/
// stdio.h
// limits.h
/***********************************************/
#define VERTICES_COUNT 5
static int MinKey(int key[], bool set[])
{
int min = INT_MAX, minIndex;
for (int v = 0; v < VERTICES_COUNT; ++v)
{
if (set[v] == false && key[v] < min)
{
min = key[v];
minIndex = v;
}
}
return minIndex;
}
static void Print(int parent[], int graph[VERTICES_COUNT][VERTICES_COUNT])
{
printf("Edge Weight\n");
for (int i = 1; i < VERTICES_COUNT; ++i)
printf("%d - %d %d \n", parent[i], i, graph[i][parent[i]]);
}
static void Prim(int graph[VERTICES_COUNT][VERTICES_COUNT])
{
int parent[VERTICES_COUNT];
int key[VERTICES_COUNT];
bool mstSet[VERTICES_COUNT];
for (int i = 0; i < VERTICES_COUNT; ++i)
key[i] = INT_MAX, mstSet[i] = false;
key[0] = 0;
parent[0] = -1;
for (int count = 0; count < VERTICES_COUNT - 1; ++count)
{
int u = MinKey(key, mstSet);
mstSet[u] = true;
for (int v = 0; v < VERTICES_COUNT; ++v)
{
if (graph[u][v] && mstSet[v] == false && graph[u][v] < key[v])
{
parent[v] = u;
key[v] = graph[u][v];
}
}
}
Print(parent, graph);
}
Example
int graph[VERTICES_COUNT][VERTICES_COUNT] = {
{ 0, 2, 0, 6, 0 },
{ 2, 0, 3, 8, 5 },
{ 0, 3, 0, 0, 7 },
{ 6, 8, 0, 0, 9 },
{ 0, 5, 7, 9, 0 },
};
Prim(graph);
Output
Edge Weight
0 - 1 2
1 - 2 3
0 - 3 6
1 - 4 5