Merge Sort Iterative

Merge sort is a Divide and Conquer algorithm. It divides input array in two halves, calls itself for the two halves and then merges the two sorted halves.



									int Min(int a, int b) {
	return a <= b ? a : b;
}

void Merge(int* data, int left, int mid, int right) {
	int i, j, k;
	int n1 = mid - left + 1;
	int n2 = right - mid;
	int* L = (int*)malloc(sizeof(int) * n1);
	int* R = (int*)malloc(sizeof(int) * n2);

	for (i = 0; i < n1; i++)
		L[i] = data[left + i];

	for (j = 0; j < n2; j++)
		R[j] = data[mid + 1 + j];

	i = 0;
	j = 0;
	k = left;

	while (i < n1 && j < n2)
	{
		if (L[i] <= R[j])
		{
			data[k] = L[i];
			i++;
		}
		else
		{
			data[k] = R[j];
			j++;
		}

		k++;
	}

	while (i < n1)
	{
		data[k] = L[i];
		i++;
		k++;
	}

	while (j < n2)
	{
		data[k] = R[j];
		j++;
		k++;
	}

	free(L);
	free(R);
}

void MergeSortIterative(int* data, int count) {
	int currentSize;
	int leftStart;

	for (currentSize = 1; currentSize <= count - 1; currentSize = 2 * currentSize)
	{
		for (leftStart = 0; leftStart < count - 1; leftStart += 2 * currentSize)
		{
			int mid = leftStart + currentSize - 1;
			int rightEnd = Min(leftStart + 2 * currentSize - 1, count - 1);

			Merge(data, leftStart, mid, rightEnd);
		}
	}
}
								


Example

									int data[] = { -1, 25, -58964, 8547, -119, 0, 78596 };
MergeSortIterative(data, 7);
								


Output

									-58964
-119
-1
0
25
8547
78596